skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Okoroafor, Princewill"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider the vulnerability of fairness-constrained learning to malicious noise in the training data. Konstantinov and Lampert (2021) initiated the study of this question and proved that any proper learner can exhibit high vulnerability when group sizes are imbalanced. Here, we present a more optimistic view, showing that if we allow randomized classifiers, then the landscape is much more nuanced. For example, for Demographic Parity we need only incur a Θ(α) loss in accuracy, where α is the malicious noise rate, matching the best possible even without fairness constraints. For Equal Opportunity, we show we can incur an O(sqrt(α)) loss, and give a matching Ω(sqrt(α)) lower bound. For Equalized Odds and Predictive Parity, however, and adversary can indeed force an Ω(1) loss. The key technical novelty of our work is how randomization can bypass simple 'tricks' an adversary can use to amplify its power. These results provide a more fine-grained view of the sensitivity of fairness-constrained learning to adversarial noise in training data. 
    more » « less